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Principles of amplifiers

1.1 Introduction

The amplifier is a basic building block of electronic systems. The contents
of the block may change over the years but we will always need to know
how one amplifier will load another when they are connected in series
(cascade). Also we will need to know how an amplifier will be affected by
the capacitance of the wires bringing its input to it and taking its output
from it.

Consider the amplifier shown in fig. 1.1. We will assume that the input X;
is related to the output X, by a constant. The stage is said to have a gain, 4,

given by: _ amplifier output _ X,

amplifier input X"

Supply

Fig. 1.1. Amplifier symbol.

Note that, in fig. 1.2, as the input X; is increased, there will come a time
when X, cannot rise any more due to limitations of the supply. Thus every
amplifier will become non-linear for very large output demands, as shown
in fig. 1.2. Also all amplifiers will be non-linear to some extent, even for
small signals: i.e. the ratios X,,/X,; and X,/ X,, may be different. However
there will be a restricted working range of the amplifier where the ratios are
nearly constant, say within a few per cent of each other. In this chapter,
we consider amplifiers working in their linear range and we take A4 to be
a constant.

Having said that the gain of an amplifier is 4 = X,/X;, we can write
X, = AX,. If this is so, what is the output in the arrangement in fig. 1.37
Or what is the output of the mechanical system with levers shown in

1



Principles of amplifiers

Xok /—
A on
— X,
J K
Xol
—_—
Xi

Fig. 1.2. Linearity of gain.

fig. 1.47 Is the output always 16x for an input x ? It is clear that the output
will be 16x sometimes; but if the output point is not entirely free to move,
i.e. the output could be compressing a spring, then the beams may bend
and some deflection less than 16 times the input will result. The lever
example shows a realisation of 4 = —4 on no load.

— 42
P b b X,=A2X, 7"

Fig. 1.3. Two amplifiers in cascade.

4x X,=16x7?

>k 4l S 4l N
Fig. 1.4. Lever system.

Returning to the amplifiers, let us assume that they are voltage amplifiers
each of gain = —4. That is, for a unit voltage rise at the input, there will
be a 4 unit voltage fall at the output. It is again clear that the output could
be 16v for an input v, but it may be less. This will be caused by the second
amplifier drawing current by having a path of impedance Z; at its input
terminal. If the first amplifier has an impedance Z, in its output path then
a voltage drop will occur across Z, and something less than —4v will be
the input of the second amplifier of fig. 1.5.

Thus we are interested in the ‘coupling’ between stages. Every amplifier
has these input and output impedances. Can we say what are desirable
values for best voltage, or current or power coupling? These impedances
may be reactive; for instance, Z, may be 10° Q in parallel with a capacitor

2
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T Output=160?
O - —O

Fig. 1.5. Amplifiers showing coupling circuit.

of 10-°F, We wish to know what such a value for Z; will do to the
coupling between amplifiers or between an amplifier and some signal
source.

1.2 Coupling between voltage amplifiers
The circuit of fig. 1.6 contains the following parts:

(a) is a source of voltage v, and internal impedance Z;. We know that
the source may be a circuit including many devices, but Thévenin’s
theorem says that this can be reduced to a single voltage generator and a
series impedance. We could have reduced the source to the Norton form of
a single current generator and a parallel impedance; identical answers
would be obtained, but less easily.

e ) Aoplfier:
Fig. 1.6. Voltage coupling.

(b) is an amplifier whose input draws some current. One side of the input
may be ground, or may be a power supply voltage rail which would be
in common with one side of the amplifier output but, in this general case,
this is not assumed. The two terminals are shown at which the input
voltage v, may be developed and the impedance Z, across these terminals
is the input impedance of the amplifier.

Again the amplifier may contain many components but the Thévenin
representation is used whereby the output circuit is reduced to one voltage
generator Av, and one series impedance Z;. If no load current flows and so
no voltage drop occurs in Z,, Av, will be the output for an input v,. So A4 is
the no-load ‘'voltage gain of the amplifier and Z; is the amplifier’s output
impedance.



Principles of amplifiers

(c) is either a load of impedance Z,, or is a further amplifier which may
draw current from the amplifier (b) and which we represent as having an
input impedance Z,. The voltage developed across this load is v,.

Considering the input circuit of the first amplifier, we wish to know what
voltage v, is developed there compared to v, which is the voltage that would
be available from the source if no current was drawn from it.

Kirchhoff’s laws allow us to solve circuit problems in two ways. The first
way is to label the voltages appearing between different points of a circuit
and some reference point. We can then write the currents in each path of
the circuit to be equal to the voltage difference between the ends of the
path divided by the impedance of the path. Lastly we write down that the
currents into any point of a circuit must equal the currents out of that
point. Thus we end with as many equations as points and we can solve
these equations. The second way is to mark in the unknown circulating
currents in each loop and write down that the voltage drops round a loop
must equal the source voltages.

In our circuit the voltages are already labelled, and at the upper input
terminal of the amplifier, the current out of the source must equal that
flowing into the amplifier (we have shown no other paths) thus:

ViV _ Ve

Zl - Z2
or nWZy = Vo Z 4+ vy, Z,,
SO Vo = ¥ (=—=—]. 1.1
2 1 (21+ZZ ( )

Note that this could have been obtained by putting in i, as an unknown
circulating current and from

nw=iZ,+iyZ, and v, =iZ,

the same relation for v, and v, results,

Equation (1.1) is sometimes called the Z,
potential divider expression for the circuit
of fig. 1.7. Z,

65—

The outputvoltage is a fraction Z,/(Z, +Z,)
of the input voltage; but note that this is only
true when no other current is drawn from the
point joining Z, and Z,. This equation is easy to remember and can be used

@

Fig. 1.7. Potentiometer.

4



Coupling between voltage amplifiers

Fig. 1.8. Multistage voltage amplifier.

if all the circuits across which v, is developed are combined to give one
effective impedance Z, which is used in the equation.

Under some circumstances, we may want perfect voltage coupling or
v, — v;. From (1.1) this is achieved if

ZI%ZZZ -1 or Z, <€2Z,

Note that we do not want Z, to be 0 but merely very much smaller than Z,,
the input resistance of the amplifier. A factor making Z, from 20 to 100
times smaller than Z, is suitable for most engineering purposes although
for high quality instrumentation and computing, a factor making Z, from
103 to 108 smaller may be appropriate.

Referring again to the circuit, fig. 1.6, we can write an equation similar
to (1.1) for the second part of the circuit:

— v (%) = ﬁ_) (_é_) :
= Av, (Za+Z,,) =4 (zl+z2 ZotZy) 'V
or for the multistage amplifier with » identical stages shown in fig. 1.8, we
may write generally:

= n Zl Zi n-1 Z2
=4 (Zi+Z1) (Zi+Zo) (ZO+Z2) Y15 (12)

where Z; is the input impedance and Z, is the output impedance of each
amplifier.

Thus as a general method of working out the overall relation, we have
separated the ‘attenuation’ (which is a gain of less than unity) of each
coupling section between amplifier blocks from the gain of the amplifier
blocks.

1.3 Worked example

A sine wave generator whose internal source is represented by a phasor of
voltage 10/ —10° at a certain instant has an output impedance 600—j100 . It
is connected to a circuit of impedance 4000 — j700 Q; what input will be developed
there?
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+i

———— 10cos 10° — 4

. >
10° | +real

bl T\l() sin 10°

Fig. 1.9. Phasor diagram of v,.

These data refer to a circuit similar to the left-hand part of fig. 1.6 where:
vy = 10 £—-10° or 10cos 10°—j10sin 10° volts (see fig. 1.9),
Z, = 600—-j100Q,
Z, = 4000—j700Q.

Equation (1.1) gives:

WZy o 4000—{700
"= Z5z, = 10410 g =500
4061 £ —9°56'
3669 Z =951

L{=10°+(—9° 56")— (—9° 51")}

=102-10°

_ 10 x 4061
= 3669

= 8.70 £ —10° 5’ volts.

This is 87 per cent of the unloaded output of the generator and lagsit by 5.
This arithmetic, which consists of taking the produc¢t and quotient of
complex quantities, is more easily handled in polar form. Each step can
be checked roughly and numerical mistakes are less likely to creep in, i.e.
one would expect an impedance to 4000 Q resistance and 700 Q capacita-
tive reactance to have a magnitude of a little over 4000 Q, and so on.

1.4 Logarithmic expression for gain: the decibel (dB)

The logarithmic expressions for gain have several uses. To work out the
gain of a multistage amplifier from an expression such as (1.2), one just
adds the logarithmic gain for each coupling and for each amplifier to get
the overall gain of many stages in cascade.

In fig. 1.8, we considered how the output voltage, v,, was related to the
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input voltage v, and an expression of the form, v, = (voltage gain)v, was
obtained for an amplifier. If we know what resistances the input and out-
put voltages appear across, say R; and R, respectively, then we can write
that the input power, p; = v;2/R,. Similarly the output power, p, = v*/R,,
where v, and v, are the RMS voltages. Then a figure for power gain could
be obtained from .
p. = (power gain)p,.

An alternative to the dimensionless figure for power gain is that expressed
in decibels (dB) and it is defined by:

Power gain (dB) = 101ogm§2-. (1.3)
1

Thus an amplifier giving 4 watts output for 4mW input will have a power
gain of 30 dB. If we write the powers in terms of voltages we get

: _ Y[Ry

Power gain (dB) = 10logy, WIR,

— 20logy, 2+ 10logy, 2. (1.4)
Y R,
In any circuits where R, = R,, then and only then:
Power gain (dB) = 2010g10—:—g
1

= 20log,, (voltage gain). (1.5)

Many communication circuits are designed with standard source and
load resistors of 600 Q and transmission lines of 50 and 75 €. In these
systems, (1.5) expressing the voltage gain in dB is often used.

The decibel unit of power gain is very useful for two reasons:

(@) The response curves of many circuits have simple forms when the
gain in decibels is plotted against the frequency on a logarithmic scale.

() When power (or voltage or current) amplifiers are followed by
further circuits with gain (4dB) or attenuation (—dB), then the overall
gain is obtained algebraically by summing the gains and attenuations of all
parts in a path between the input and output.

Thus if our amplifier of input 4 mW and output 4 W is followed by a
passive circuit of power gain 0.5 (or attenuation of 2) and this is followed
by a further amplifier of power gain 400, then in terms of decibels:

Power gain of 0.5 = 10log,;,0.5'= —10log,,2 = —3 dB.
Power gain of 400 = 10log,(400 = 10x2.6 = +26dB,
and therefore the overall gain = 30—3+26 = +53 dB (or 200000 times).

7
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4

"T . ™2 .-1.I|1 LT Z.
;T .

{a) Source i Admpdifier () Arplifier

Fig. 1.10. Current coupling.

Readers will see some amplifier data sheets with the gain quoted in
decibels without the output load being specified. These data should be
treated with caution.

1.5 Coupling between current amplifiers

The circuit of fig. 1.10 contains the following parts.

(@) is a source of current i, and internal impedance Z,. Norton’s theorem
allows the source, whatever its internal complexity, to be reduced to a
single current generator and parallel impedance Z;. The conduction path
Z, means that the source can waste some of its current internally which is
the dual of a voltage source dropping some of its voltage internally.

(b) is an amplifier whose input impedance is Z,: thus to drive a current i,
into the input terminals, some voltage must exist there. The amplifier is
reduced to an equivalent circuit of a single generator 4i, and a parallel
impedance Z; at the output terminals. Here A4 is the current gain of the
amplifier when it is loaded by a short circuit and Z, is its output impedance.

In the ideal current amplifier, Z, = 0. It may appear unreal to terminate
any source by a short circuit, but certain devices are good current amplifiers
and we shall show that, for best current coupling, they should be followed
by low impedance stages.

(c) is a further amplifier which has an input impedance Z, or it is a load.

Considering the input circuit of the first amplifier, we wish to know what
current, i,, flows into the first amplifier compared with i;, which is appa-
rently available from the source. Kirchhoff’s current law allows us to write
that the current going down Z, is i; —i,, whence we can write expressions
for the voltage at the amplifier input as

Z\(i,—iy) or i,Z,.
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Since these are identical,
Z\(iy—lp) = iy Z,,

. s Zl
SO ip = iy (ZI+Z2)' (1.6)
Note that this is the dual of the voltage coupling expression. Now it is the

load impedance Z, which should be much smaller than the source im-
pedance to give good current coupling, i.e. when,

Z, €7, (Z1+2Z,) = Z,,
$O iy ® Ij.

Consider next the current i; coupled from the amplifier output to the
next stage input in fig. 1.10; here

, . Zy Z, Z .

= din(757) = 15z) (z2z) -
So the overall gain, i,/i;, is the product of the gain of an amplifier and the
efficiency of its input and output coupling; namely Z,/(Z,+Z,) and
Zs/(Zs+2Z,) respectively. If these figures are known or calculated in
decibels, the terms are added rather than multiplied.

It is interesting that bipolar transistors whose input resistances are
usually much smaller than their output resistances give good current
coupling between each stage when they are connected in cascade. (Typical
figures for a small transistor are an input resistance of 1 k(2 and an output
resistance of 30 k<2 or, for a power transistor, 10 Q and 200 2 respectively.)

1.6 Loading of a source for maximum power output
The circuit of fig. 1.11 shows:

(@) a source whose voltage on no load is v, and whose internal impedance
Z,, has resistive and reactive components, R, and X;.

(b) aload whose impedance, Z,, we wish to determine to get maximum
power output from the source. The load is considered generally to be made
up of a resistive part R, in series with a reactive part of impedance X..

We can write the value of the current into the load, i, as:

P = e.m.f. - " a7
2" impedance Z,+Z, R;+R;+j(X;+Xp)’ )

The expressions for power in any load are |vy| |iy cos ¢ or |iy?R,. Both

9
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£+ X,

(@) Sowrce b L

Fig. 1.11. Power coupling.

will give the same result. Here we do not know the load voltage, v,, but we
do know the load current i, and the resistive part of the load R, through
which the current flows. Hence the power into the load, p, is given by:

2

R,

. v
P = "R = | R R (T D
which cannot exceed Ry (1.8)
(Ry+Ry)* '
This is because the complex denominator can be made a minimum if
X, = — X, and this will make the power a maximum. Thus the first condi-
tion for getting maximum power output is that the load reactance, X,,
should be the conjugate of the source internal reactance, Xj; i.e. if one is
inductive the other should be capacitative and vice versa.
Differentiating the expression for power, p,, with respect to R, gives:
dp, _ (Ry+ Rp)*vi®— 2> Ry(R; + Ry)
dR, (Ri+Ry)

= 0 for a maximum or minimum. This is given by

setting the numerator to zero,
0 = (Ri+Ry)—2R,,
hence R, = R,. (1.9)

This is a well known result that the resistive part of the load impedance
must be equal to the resistive part of the source impedance for maximum
power output. Substituting the value R, = R, into the expression for
power p,, (1.8), gives: 1v2

P, (maximum) = iR
1

Note that v,2/R, is the power that could be dissipated internally in the
source if the output terminals were loaded only by a reactance X, equal
to — X;. Thus the maximum power output is a quarter of that that could
be dissipated internally in the source.

10
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Fig. 1.12, Variation of coupling with the ratio of load to source resistance.

Power matching is used mainly in three situations:

(a) Where the signal levels are very small so any power lost gives a
much worse signal to noise ratio: for example, it is used in all aerial to
receiver connections in television, radio and radar equipment.

(b) Where the signal at high frequency is connected through lines of
appreciable self capacity and self inductance to a load. Then it is possible
to get large standing waves due to reflections from the load which can make
the source to load power transfer low.

(c) Where signals are very large, say at the output stage of a transmitter,
and where the maximum efficiency is desirable on economic grounds.

Fig. 1.12, summarises how the ratio of load to source resistance influ-
ences the efficiency of voltage, current and power coupling between circuits.

1.7 Frequency characteristics of coupling circuits and
amplifiers

So far, the gain and other properties of the amplifier blocks and the
coupling between the blocks have not been related in any way to fre-
quency. There will always be some high frequency at which the gain of any
amplifier is less than its gain at low frequency. The effects are akin to
mechanical inertia; on requiring an output, it takes a finite time for current
flowing at an input terminal of a device to pass through it and reach its
output — this is called transit time and it is naturally very short if the
device is small. Also, it takes time for the voltage to build up in an output
circuit after current has started to flow into it, due to its capacitance. Thus
we can show some features of an amplifier’s response by showing the out-
put of an amplifier for a step input, fig. 1.13.

11
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Voltage

Time

Fig. 1.13. Amplifier output for step input.

To a rough approximation, the output may rise exponentially; the time
constant of the amplifier can be obtained from the time taken for the out-
put to get to 63 per cent or 1 —1/e of the state to which it eventually settles.
If this time is 7,, then we have approximated the output as a function of
time to vy(t) = Avy(1—e ).

DC coupled

|Gain|

AC
coupled

Frequency

Fig. 1.14. Frequency response of a typical circuit.

An alternative representation to show the gain of an amplifier or of
a coupling circuit is to plot the magnitude of its gain against frequency, as
in fig. 1.14. The approximate relationship between f, when the gain starts
dropping and 7, is simple and it will be developed later.

The important features of an amplifier can be seen from a plot of its
|gain| against frequency. It will amplify signals at frequencies between
f1 and f; by very nearly the same amount. Thus a musical note with certain
harmonics at the source should be almost faithfully amplified if the funda-
mental and the main harmonics present are in the range of frequencies
between f; and f,. The waveform of the electrical signal to make a television
picture is very complex. It contains components between 25 Hz and 5§ MHz
and thus ‘video’ amplifiers need to have a flat response over this band.
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The methods of Fourier series and Fourier transforms allow pulses, ramp
waveforms and square waves to be broken up into a spectrum of fre-
quencies. The circuit should have approximately the same gain and ap-
proximately the same phase shift over this spectrum for the waveform at
the output to closely resemble that at the input.

We wish therefore to know which components in the coupling and
amplifier circuits will give rise to the frequencies f; and f; at which the gain
drops from a largely constant figure called the midband gain. It is possible
to have coupling circuits whose gain stays constant down to zero fre-
quency - such circuits are called direct current coupled or ‘DC coupled’.
With many circuits this is not necessary and they can be simplified by being
coupled for alternating signals only and so are called ‘AC coupled’. The
difference between these two is shown at the left-hand end of the response
plot, fig. 1.14.

We want to construct such a plot with the minimum of computational
effort. We wish to know which components in our amplifiers and coupling
circuits give rise to the drop in gain at the extremes of frequency. Then we
can design circuits to handle just the frequency band required for the
signals in which we may be interested.

1.8 Coupling circuits at low frequency

The following analysis explores the effect of a simple coupling circuit
between a source and load. Exactly the same effect is produced by coupling
circuits between stages of amplifiers and by the decoupling circuits needed
by amplifiers (decoupling circuits are mentioned in the chapters on ampli-
fier realisation with field-effect and bipolar transistors). In those cases one
must first identify the resistors in series with the reactive element and the
analysis then reduces to the same as that now given.
The circuit, fig. 1.15, shows:

(@) is a sinusoidal source of voltage of amplitude v, and frequency
o radfs = 2nf where fis in hertz (Hz). The source internal impedance Z, is
shown to be partly resistive and partly reactive. The reactive part is due to
a capacitor C, which may be blocking the internal supply voltages of the
source from appearing at its output terminal. Alternatively it may be
stopping the source circuit from upsetting the DC supply voltages of an
amplifier which is forming the first stage of the load. Then C, may actually
be within the load but it can be considered as having an effect similar to
that of R,; i.e. a voltage drop will occur across it so that part of v, is
dropped and not usefully developed across the resistive part of the load.

13
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Fig. 1.15. Coupling circuit with series capacitor.

(b) is the load which is considered to be resistive only, so Z, = R,. This
is an approximation because there will be stray capacities in all circuits,
but the fact is separately investigated in §1.9.

We need to obtain an expression for the voltage v, appearing at the load
in terms of the source voltage v;. The expression for voltage coupling
gives

Vo = 1y (__2_2___.) = "1( 82 ) - _"N R.2/(R1+R2) .
Z,.+Z, R, +1[/juC,+R, 1+ 1/jwCy(R,+ Ry)
By studying the dimensions of each term of the final expression, it can
be seen that the denominator must be dimensionless. Since w has the units
of s71, the product C;(R, + R,) must have the units of seconds and is called
the time constant, 7,. (This seems odd until the units of farads x ohms are
looked at more closely and are found to be seconds!)
Now we wish to find out how the expression for v, changes with the
frequency, w. We consider three cases.

(1.10)

(a) Frequency is high so  in the denominator of the expression makes
the complex part < 1.

Vv Ry
So gain = v X RAR, B, say. (1.11)

Note that this is real and not imaginary. Therefore there is no phase shift

associated with the circuit gain at high frequency. This is plotted in fig. 1.17
as the region (a).

(b) At a frequency w = wy, such that

. I 1
Cyi(Ry+Ry) = 1 ( =_*=_)‘ t12
0, Ci(R,+ R,) 1.€. &, C(R,+R,) 1, (112

Gain = Yo _ Ry[/(R, + R,) _ i
v, I+1f.1 1—j

=B 07078 £ 445"
Fig. 1.16 shows the conversion from cartesian to polar co-ordinates.
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Fig. 1.16, Phasor diagram for gain at low frequency turnover.

+real

At this particular frequency, w,, the gain is 70.7 per cent of its value at
the higher frequency and the phase shift is such that the output leads the
input by 45°. This is plotted on fig. 1.17 in the region (b). w, is called the

turnover frequency.

—20dB

|Gainjor|v,/v,|

0.1o, w, Frequency w(rad/s)

Fig. 1.17. Gain magnitude and phase angle plotted against frequency.

(¢) The third region of interest is at very low frequency, well below the
turnover frequency w,. Remember that at w,, the complex part of the
denominator of the expression had equalled unity, so, at a much lower

frequency, I
wCy(R; + Ry) > 1.

Using CRy+Ry) = —,
then from (1.10) '
Gain =22 x RRtR) _ o ip® B9, Lope,  (113)
Vi oy [jw Wy 151
The final expression has been converted from complex terms to polar
co-ordinates to give a magnitude and phase angle for the gain and these
.are shown in region (c) of figure 1.17.
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Thus at a frequency one tenth of the turnover frequency, v = 0.1w,, the
magnitude of the gain is 0.1B, and at one hundredth of the turnover fre-
quency, the gain is 0.01B. Thus on a logarithmic plot of gain against
frequency, the relation will be linear (note 0.1B = 20 log,, B — 20 decibels
and 0.01B = 20 log,, B — 40 decibels because these are voltage ratios).

The broken lines on fig. 1.17 where the gain tends to a constant value B
at frequencies above the frequency w, and where the gain tends to fall
linearly at frequencies below w, show an approximate response curve
which is called the asymptotic approximation to the frequency response.
More accurately, the gain has dropped to 0.707B at w, and the response
curve really passes through this point and is an asymptote to the two
broken lines which are accurate for low or high frequencies. The reason
for calling @, the turnover frequency or break frequency can now be seen;
clearly the gain has stopped being a constant figure B and drops steeply
once the frequency drops below w,.

The expression for gain gave an angle as well as a magnitude for the
ratio v,/v,. Rewriting the expression as v, = gain x v,, we see that if the gain
had a positive angle between 0 and 90° associated with it then v, will lead
v, in phase by between 0 and 90°, the actual value depending on the fre-
quency. The cartesian plot of log |gain| and £ gain against log frequency is
called the Bode plot for the circuit and fully specifies the gain of the circuit.

The alternative scaling on the |gain} axis shows how simple the relation
becomes in decibels. If the output of By, at higher frequencies is taken as
the normal level, then when the frequency has dropped to w,, the output is
0.707 of Bv,.

Voltage ratio 0.707 = 20log;,0.707
= —20log;,1.414

~ — 3 decibels.

When the frequency is well below w,, if the frequency is halved, or dropped
by an octave, the gain will also be halved.

Voltage ratio 0.5 = 20log,,0.5
= —20l0g;(2.0 & —6 decibels.

So the slope of the asymptote is — 6 decibels/octave. It can alternatively be
expressed as — 20 decibels/decade.

The analysis from fig. 1.15 showed the source as a voltage generator.
A similar analysis could be done if the source was a current generator, i,
and had a parallel conductance G,. However it is easier to use the con-
version from current to voltage source shown in fig. 1.18.
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